Product Overview
Surface chemistry is just as delicate as walking on water

AEROSIL® optimizes:
- powder coatings
- air bags
- silicone sealants
- seals, e.g. coated bottle caps
- toothpastes
- creams, lotions, gels
- deodorants
- golf balls
- chemical anchors
- foils and films
- plastic bags
- toner for copiers and laser printers
- insulation materials
- shoe soles
- technical rubber goods
- dental composites and fillers
- ground herbs and spices
- 2-component mortar and concrete
- marine paints
- technical components, e.g. wind turbines
- adhesives
- tablets
- thermal insulation
- battery gels
- greases & lubricants
- inkjet paper
More than six years of experience in the production, modification and application of fumed silica provide a sound basis for continuously enhancing these products. We strive to meet the increasing demands of existing and new areas of application. Our objective is to fully satisfy our customers’ expectations – now and in the future.

We invest in innovative, emerging applications so we can share expanding markets with our customers. An example of this is the computer industry, where AEROSIL® fumed silica has been an auxiliary material in the production of microchips since the 1990s. Thanks to the versatility of AEROSIL® products, there is always potential for us to discover new markets and applications that are waiting to be discovered.

In addition to experience and the spirit of research, AEROSIL® fumed silica is characterized by one thing in particular: our value-added-product philosophy. This philosophy is driven by a package of service components which complement each other and combine perfectly to contribute towards achieving enormous effects with aggregated particles.

This package is based on excellent customer contact, world-wide technical support and advice, as well as a consistent high level of product quality and supply security. Additional components are: tailor-made logistics concepts to ensure reliable delivery, research & development, handling technology and, last but not least, very detailed technical literature. On repeated occasions, this philosophy has set new standards in the product quality of AEROSIL® fumed silica and enables us to create genuine added value for our customers every day.

AEROSIL® – More than just a powder

AEROSIL® – Products with countless possibilities

More than 60 years of experience in the production, modification and application of fumed silica provide a sound basis for continuously enhancing these products. We strive to meet the increasing demands of existing and new areas of application. Our objective is to fully satisfy our customers’ expectations – now and in the future.

We invest in innovative, emerging applications so we can share expanding markets with our customers. An example of this is the computer industry, where AEROSIL® fumed silica has been an auxiliary material in the production of microchips since the 1990s. Thanks to the versatility of AEROSIL® products, there is always potential for us to discover new markets and applications that are waiting to be discovered.

Having everything in perfect sync opens up unforeseen perspectives

In addition to experience and the spirit of research, AEROSIL® fumed silica is characterized by one thing in particular: our value-added-product philosophy. This philosophy is driven by a package of service components which complement each other and combine perfectly to contribute towards achieving enormous effects with aggregated particles.

This package is based on excellent customer contact, world-wide technical support and advice, as well as a consistent high level of product quality and supply security. Additional components are: tailor-made logistics concepts to ensure reliable delivery, research & development, handling technology and, last but not least, very detailed technical literature. On repeated occasions, this philosophy has set new standards in the product quality of AEROSIL® fumed silica and enables us to create genuine added value for our customers every day.
Along with the traditional polyester, silicone, paints and coatings applications, hydrophilic AEROSIL® products are used with increasing success in high technology fields. The particle nature and high purity of fumed silica play key roles in the electronics and optical fibers industries. AEROSIL® EG 50 is of an especial highly pure quality and has been developed for these applications.

Furthermore, the hydrophilic AEROSIL® grades are characterized by an X-ray amorphous structure. Depending on the market and application, products with various primary particle sizes and different BET-surface areas are available. Certain types are also available in compacted form (V and VV grades) and in a pharmaceutical grade.

Hydrophilic Fumed Silica

When it comes to extreme temperature fluctuations, AEROSIL® keeps you always well protected

Positive Effects:
- Optimum adjustment of rheology during processing
- Reinforcement of silicone elastomers
- Thickening of non-polar liquids
- Free-flow of foodstuffs and industrial powders
- High chemical purity
- Excellent insulation properties, even at high temperatures
- Conversion of liquids to powders, e.g. pharmaceuticals, cosmetics
- Gelification of battery acids
- Rheology control of greases & lubricants

AEROSIL® fumed silica is used in the adhesives and sealants that to bond and seal cockpits, fuel tanks and pressurized cabins.
Window frames containing AEROSIL® products exhibit temperature stability even in extreme conditions.

Hydrophilic Fumed Silica

<table>
<thead>
<tr>
<th>AEROSIL® Grades</th>
<th>BET Surface Area [m²/g]</th>
<th>Loss on Drying [wt.%]</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROSIL® 90</td>
<td>90 ± 15</td>
<td>≤ 1.0</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® 130</td>
<td>130 ± 25</td>
<td>≤ 1.5</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® 150</td>
<td>150 ± 15</td>
<td>≤ 1.5</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® 200</td>
<td>200 ± 25</td>
<td>≤ 1.5</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® 300</td>
<td>300 ± 30</td>
<td>≤ 1.5</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® 380</td>
<td>380 ± 30</td>
<td>≤ 2.0</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® OX 50</td>
<td>50 ± 15</td>
<td>≤ 1.5</td>
<td>3.8 - 4.8</td>
</tr>
<tr>
<td>AEROSIL® EG 50</td>
<td>50 ± 15</td>
<td>≤ 1.5</td>
<td>3.8 - 4.8</td>
</tr>
<tr>
<td>AEROSIL® TT 600</td>
<td>200 ± 50</td>
<td>≤ 2.5</td>
<td>3.6 - 4.5</td>
</tr>
<tr>
<td>AEROSIL® 200 SP</td>
<td>200 ± 25</td>
<td>≤ 1.5</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROSIL® 300 SP</td>
<td>300 ± 30</td>
<td>≤ 1.5</td>
<td>3.7 - 4.7</td>
</tr>
<tr>
<td>AEROPERL® 300/30</td>
<td>300 ± 30</td>
<td>≤ 3.5</td>
<td>4.0 - 6.0</td>
</tr>
</tbody>
</table>

The data represent typical values.
Numerous grades of hydrophobic AEROSIL® fumed silica have been developed to solve particular technical problems. AEROSIL® hydrophobic fumed silica are produced by chemical treatment of hydrophilic grades with silanes or siloxanes. In the finished product the treatment agent is chemically bonded to the previously hydrophilic oxide. AEROSIL® hydrophobic products are characterized, among other things, by a low moisture adsorption, excellent dispersibility and their ability to adjust rheological behavior, even that of polar systems.

AEROSIL® grades such as R 7200, R 8200 and R 9200 undergo additional structural modification which makes it possible to offer further support to our customers in the development and enhancement of their products. An example of this would be higher loading levels in liquid systems with little impact on viscosity.

Positive Effects:
- Optimum rheology during processing
- Thickening of polar liquids, e.g. epoxy resins
- Reinforcement of silicone elastomers
- High levels of loading, e.g. molding compounds
- Excellent water-repelling properties, leading to improved corrosion protection
- Improvement of dielectric properties, e.g. in cable compounds
- Free-flow of powders, e.g. in fire extinguishers
- Increased scratch resistance, e.g. in paints and plastics

Hydrophobic Fumed Silica

AEROSIL® gives water-repellent paints and coatings an edge

Application properties of a coating.
(left) reference (right) containing 0.5% of AEROSIL® R 816

Rheometer MCR 300 Paar Physica.
AEROSIL® ensures an excellent long-time look of your products.

Hydrophobic Fumed Silica

<table>
<thead>
<tr>
<th>AEROSIL® Grades</th>
<th>BET Surface Area [m²/g]</th>
<th>Loss on Drying [wt.%]</th>
<th>pH</th>
<th>Carbon Content [wt.%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROSIL® R 972</td>
<td>110 ± 20</td>
<td>≤ 0.5</td>
<td>3.6 - 5.5*</td>
<td>0.6 - 1.2</td>
</tr>
<tr>
<td>AEROSIL® R 974</td>
<td>170 ± 20</td>
<td>≤ 0.5</td>
<td>3.7 - 4.7</td>
<td>0.7 - 1.3</td>
</tr>
<tr>
<td>AEROSIL® R 104</td>
<td>150 ± 25</td>
<td>–</td>
<td>≥ 4.0</td>
<td>1.0 - 2.0</td>
</tr>
<tr>
<td>AEROSIL® R 106</td>
<td>250 ± 30</td>
<td>–</td>
<td>≥ 3.7</td>
<td>1.5 - 3.0</td>
</tr>
<tr>
<td>AEROSIL® R 202</td>
<td>100 ± 20</td>
<td>≤ 0.5</td>
<td>4.0 - 6.0</td>
<td>3.5 - 5.0</td>
</tr>
<tr>
<td>AEROSIL® R 805</td>
<td>150 ± 25</td>
<td>≤ 0.5</td>
<td>3.5 - 5.5</td>
<td>4.5 - 6.5</td>
</tr>
<tr>
<td>AEROSIL® R 812</td>
<td>260 ± 30</td>
<td>≤ 0.5</td>
<td>5.5 - 7.5</td>
<td>2.0 - 3.0</td>
</tr>
<tr>
<td>AEROSIL® R 812 S</td>
<td>220 ± 25</td>
<td>≤ 0.5</td>
<td>5.5 - 7.5</td>
<td>3.0 - 4.0</td>
</tr>
<tr>
<td>AEROSIL® R 816</td>
<td>190 ± 20</td>
<td>≤ 1.0</td>
<td>4.0 - 5.5</td>
<td>0.9 - 1.8</td>
</tr>
<tr>
<td>AEROSIL® R 7200</td>
<td>150 ± 25</td>
<td>≤ 1.5</td>
<td>4.0 - 6.0</td>
<td>4.5 - 6.5</td>
</tr>
<tr>
<td>AEROSIL® R 8200</td>
<td>160 ± 25</td>
<td>≤ 0.5</td>
<td>≥ 5.0</td>
<td>2.0 - 4.0</td>
</tr>
<tr>
<td>AEROSIL® R 9200</td>
<td>170 ± 20</td>
<td>≤ 1.5</td>
<td>3.4 - 5.0</td>
<td>0.7 - 1.3</td>
</tr>
</tbody>
</table>

*Narrower pH possible, depending on region
The data represent typical values.
Fumed Mixed Oxides

From an optical perspective, AEROSIL® adds clarity

AEROSIL® MOX grades are recommended for the production of highly-loaded low viscous aqueous dispersions. The fumed mixed oxides are manufactured (co-fumed) using the AEROSIL® process as previously described, and may be regarded as a mixture of SiO$_2$ and Al$_2$O$_3$ on the molecular level. AEROSIL® COK 84 is a physical mixture of SiO$_2$ and Al$_2$O$_3$, which provides strong thickening effects in aqueous media.

Positive Effects:
- High-loading levels of MOX grades in dispersions
- Strong thickening effect in polar media with AEROSIL® COK 84
- Catalyst support
- Rheology control of greases & lubricants
All grades of AEROSIL® prove themselves through their special chemical purity.

Fumed Mixed Oxides

<table>
<thead>
<tr>
<th>AEROSIL® Grades</th>
<th>BET Surface Area [m²/g]</th>
<th>Loss on Drying [wt.%]</th>
<th>pH</th>
<th>Chemical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROSIL® MOX 80</td>
<td>80 ± 20</td>
<td>≤ 1.5</td>
<td>3.6 - 4.5</td>
<td>SiO₂/Al₂O₃</td>
</tr>
<tr>
<td>AEROSIL® MOX 170</td>
<td>170 ± 30</td>
<td>≤ 1.5</td>
<td>3.6 - 4.5</td>
<td>SiO₂/Al₂O₃</td>
</tr>
<tr>
<td>AEROSIL® COK 84</td>
<td>185 ± 30</td>
<td>≤ 1.5</td>
<td>3.6 - 4.3</td>
<td>SiO₂/Al₂O₃</td>
</tr>
</tbody>
</table>

The data represent typical values.
The AEROSIL® manufacturing process can also be applied to produce fumed aluminum and titanium oxides. The treatment processes mentioned previously are also applicable here and result in a wide range of fine particle products with extraordinary properties.

AEROXIDE® Alu C is a pure aluminum oxide with a hydrophilic character. In water it displays a positive zeta potential. Its primary use is as a free-flow agent and it regulates triboelectric effects.

AEROXIDE® TiO₂ P 25 is a titanium dioxide without pigment properties. Thanks to its purity and fine particle size, it may be used as a catalyst support or as a heat stabilizer for silicone rubber.

Positive Effects:
- Free flow in powder coatings
- Heat stabilization of silicone elastomers
- Optimization of adsorption properties, e.g. inkjet applications
Hydrophilic Fumed Metal Oxides

<table>
<thead>
<tr>
<th>AEROSIL® Grades</th>
<th>BET Surface Area [m²/g]</th>
<th>Loss on Drying [wt.%]</th>
<th>pH</th>
<th>Chemical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROXIDE® Alu C</td>
<td>100 ± 15</td>
<td>≤ 5.0</td>
<td>4.5 - 6.0</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>AEROXIDE® Alu 65</td>
<td>65 ± 10</td>
<td>≤ 5.0</td>
<td>4.5 - 6.0</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>AEROXIDE® Alu 130</td>
<td>130 ± 20</td>
<td>≤ 5.0</td>
<td>4.4 - 5.4</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>AEROXIDE® TiO₂ P 25</td>
<td>50 ± 15</td>
<td>≤ 1.5</td>
<td>3.5 - 4.5</td>
<td>TiO₂</td>
</tr>
</tbody>
</table>

The data represent typical values.
Special products can be developed and delivered on demand. The data represent typical values. Special products can be developed and delivered on demand.

<table>
<thead>
<tr>
<th>AEROSIL® Grades</th>
<th>BET Surface Area [m²/g]</th>
<th>pH</th>
<th>Carbon Content [wt.-%]</th>
<th>Chemical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROSIL® RY 50</td>
<td>30 ± 15</td>
<td>4.5 - 7.5</td>
<td>3.0 - 4.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® NY 50</td>
<td>30 ± 10</td>
<td>5.0 - 6.0</td>
<td>2.5 - 3.5</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® RY 200</td>
<td>100 ± 20</td>
<td>4.0 - 7.0</td>
<td>3.5 - 5.5</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® RY 200 S</td>
<td>80 ± 15</td>
<td>4.5 - 6.5</td>
<td>3.5 - 4.5</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® RX 50</td>
<td>35 ± 10</td>
<td>6.0 - 8.0</td>
<td>0.5 - 0.75</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® NAX 50</td>
<td>40 ± 10</td>
<td>6.0 - 8.0</td>
<td>0.45 - 0.85</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® RX 200</td>
<td>140 ± 25</td>
<td>5.5 - 8.5</td>
<td>1.5 - 3.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® RX 300</td>
<td>210 ± 20</td>
<td>6.0 - 8.0</td>
<td>3.0 - 5.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® R 504</td>
<td>150 ± 25</td>
<td>8.5 - 10.5</td>
<td>2.0 - 4.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROSIL® DT 4</td>
<td>160 ± 25</td>
<td>4.0 - 6.0</td>
<td>4.0 - 6.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROXIDE® LE 1</td>
<td>160 ± 30</td>
<td>5.0 - 8.5</td>
<td>≥ 2.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROXIDE® LE 2</td>
<td>220 ± 30</td>
<td>5.5 - 7.5</td>
<td>2.5 - 4.5</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROXIDE® LE 3</td>
<td>100 ± 20</td>
<td>4.0 - 6.0</td>
<td>3.5 - 5.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td>AEROXIDE® TiO₂ T 805</td>
<td>45 ± 10</td>
<td>3.0 - 4.0</td>
<td>2.7 - 3.7</td>
<td>TiO₂</td>
</tr>
<tr>
<td>AEROXIDE® Alu C 805</td>
<td>100 ± 15</td>
<td>3.0 - 4.5</td>
<td>3.5 - 4.5</td>
<td>Al₂O₃</td>
</tr>
</tbody>
</table>

The data represent typical values.
Special products can be developed and delivered on demand.

Special Hydrophobic Silica and Hydrophobic Metal Oxides

Specialized industries have different requirements for fumed oxides with specific properties. In order to fulfill these high technical requirements, combinations of different raw materials (SiO₂, Al₂O₃, or TiO₂), surface treatments and many manufacturing processes are employed.

The R and N grades of AEROSIL® products listed above can be used to regulate flow tribo-charge, and stability of toner for copiers and laserprinters. AEROSIL® DT 4 was specially developed for highly-loaded dental composites. AEROXIDE® LE 1, LE 2 and LE 3 provide a Lotus-Effect® to plastic surfaces. AEROXIDE® TiO₂ T 805, an efficient UV-filter, is characterized by its ease of dispersibility and low moisture adsorption.

AEROXIDE® Alu C 805 is especially recommended for moisture sensitive powder coating applications.

Positive Effects:
- Regulation of toner tribo-charge
- Free flow agent for toner
- Improved storage stability of toner
- High loading levels in dental composites
- Lotus-Effect® for the self-cleaning of surfaces
- Increased heat stability of silicone elastomers
<table>
<thead>
<tr>
<th>AEROSIL® Grades</th>
<th>pH</th>
<th>Solids Content [wt.%]</th>
<th>Viscosity [mPa.s]</th>
<th>Dispersion Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂-Dispersions, alkaline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERODISP® W 7330 N</td>
<td>9.5 - 10.5</td>
<td>30</td>
<td>≤ 1000</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 7520</td>
<td>9.5 - 10.5</td>
<td>20</td>
<td>≤ 100</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 7520 N</td>
<td>9.5 - 10.5</td>
<td>20</td>
<td>≤ 100</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 7622</td>
<td>9.5 - 10.5</td>
<td>22</td>
<td>≤ 1000</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 7520 P</td>
<td>9.0 - 10.0</td>
<td>20</td>
<td>≤ 300</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 1226</td>
<td>9.0 - 10.0</td>
<td>26</td>
<td>≤ 100</td>
<td>H₂O</td>
</tr>
<tr>
<td>SiO₂-Dispersions, acidic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERODISP® W 1714</td>
<td>5.0 - 6.0</td>
<td>14</td>
<td>≤ 100</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 1824</td>
<td>5.0 - 6.0</td>
<td>24</td>
<td>≤ 150</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 1836</td>
<td>4.0 - 6.0</td>
<td>34</td>
<td>≤ 200</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 7215 S</td>
<td>5.0 - 6.0</td>
<td>15</td>
<td>≤ 100</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 7512 S</td>
<td>5.0 - 6.0</td>
<td>12</td>
<td>≤ 100</td>
<td>H₂O</td>
</tr>
<tr>
<td>SiO₂-Dispersions, cationic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERODISP® WK 341</td>
<td>2.5 - 4.0</td>
<td>41</td>
<td>≤ 1000</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® WK 7330</td>
<td>2.5 - 4.0</td>
<td>30</td>
<td>≤ 1000</td>
<td>H₂O</td>
</tr>
<tr>
<td>Al₂O₃-Dispersions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERODISP® W 630</td>
<td>3.0 - 5.0</td>
<td>30</td>
<td>≤ 2000</td>
<td>H₂O</td>
</tr>
<tr>
<td>AERODISP® W 440</td>
<td>3.0 - 5.0</td>
<td>40</td>
<td>≤ 1000</td>
<td>H₂O</td>
</tr>
<tr>
<td>TiO₂-Dispersions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERODISP® W 740 X</td>
<td>6.0 - 9.0</td>
<td>40</td>
<td>≤ 1000</td>
<td>H₂O</td>
</tr>
<tr>
<td>Dispersions based on Ethylene Glycol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERODISP® G 1220</td>
<td>–</td>
<td>20</td>
<td>≤ 200</td>
<td>C₂H₄O₂</td>
</tr>
</tbody>
</table>

The data represent typical values.

Dispersions

Evonik has extensive knowledge, sophisticated equipment and many years of experience, all of which are necessary to produce high quality dispersions.

AERODISP® is the ideal solution for the dust-free handling of AEROSIL® fumed silica and AEROXIDE® fumed metal oxides. A special manufacturing process and many years of know-how enable us to provide these products in an exceptional state of dispersion. Further dispersions of silica and metal oxides in organic solvents are available on request.

Positive Effects:
- High ink absorptivity in photo inkjet papers
- Improved surface properties for cleaning, polishing and coating of metals, paper, textiles etc.
- Improved mechanical properties of latex rubber
- Optimized adhesion properties of self-adhesive labels
- Improved optical properties of wood stains
- Optimized rheological properties of paints, varnishes, and battery gels
- Enhanced anti-blocking effect in PET-film
For us, handling includes emptying of packaging units, storage in silos, conveying within the plant, dosing and incorporating of AEROSIL® fumed silica into the processing equipment.
Packaging and Handling

Our expertise is concentrated on applications

Standard Packaging
AEROSIL® products are supplied in a multi-layer paper bag and are equipped with a polyethylene coating on one layer. The net weight of these bags ranges from 10 kg to 20 kg (also 10 lbs in NAFTA), depending on AEROSIL® grades and their corresponding tapped density.

Flexible Intermediate Bulk Container (FIBC)
Evonik Industries also delivers AEROSIL® products in FIBC’s. These are flexible containers made of woven polypropylene bands, with loops attached to the upper corners for lifting purposes. The valve used to empty the container is located in the center of the base and is adapted to Evonik’s uniquely-designed Powder Emptying System (PESy). This system is available to our customers and enables the simple and dust-free emptying of our product. The quantity delivered varies according to the product.

Silo Transport
When large amounts of AEROSIL® fumed silica are required, delivery by silotrack shipment is standard practice in Europe and Japan, the use of railcars prevails in NAFTA. Bulk-delivered quantities vary by transport equipment and product.

Thermal Packaging for AERODISP®
AERODISP® dispersions are available in 60 kg canisters, 220 kg drums and in 1000 kg Intermediate Bulk Containers, IBC. Depending on the region, additional thermal insulation packaging is used.

Compaction Technology
Certain AEROSIL® grades are also available in a compacted form under the names AEROSIL® V and AEROSIL® VV. The densification process is carried out by means of a vacuum combined with mechanical pressure. AEROSIL® V and AEROSIL® VV differ from one another with respect to the compaction technology used. In the case of the AEROSIL® V grades, the tapped densities are 90 g/l (hydrophobic) and 120 g/l (hydrophilic). AEROSIL® VV is available with tapped densities of 50, 75, 90 and 120 g/l, which is reflected in their respective nomenclature (e.g. AEROSIL® 200 VV 75).

AEROPERL® Technology
Upon request, certain hydrophilic and hydrophobic fumed oxides can be delivered in granulated form. These products are manufactured using a specially-developed AEROPERL® process. AEROPERL® products display a high tapped density, good abrasion resistance and a high moisture adsorption. Products manufactured according to the AEROPERL® process exhibit excellent free-flow behavior and handling properties.

Storage Stability
We recommend that all AEROSIL® grades be stored in closed containers under dry conditions, protected from volatile substances and processed within one to two years after manufacture. AERODISP® dispersions should be protected from heat and frost and should be processed within 6 to 12 months after manufacturing date, depending on the grade. The date of production can be determined via the control number printed on each packaging unit.
Production site in Rheinfelden, Germany
The Advantage of a Global Enterprise – Local Proximity

Size usually creates distance – but not at Evonik. As a leading specialty chemicals company Evonik relies on the business philosophy: „as decentralized as possible, as centralized as necessary“. The decentralized organization at all levels and in all divisions of the company is tailored to operative units which can respond to the market quickly, flexibly and on a customer-oriented basis. As a brand operating worldwide, AEROSIL® uses production facilities, application-related service centers, research centers and commercial and technical service offices in all regions of the world.

The mere fact that we produce on 3 continents represents a decisive advantage for us and our customers when it comes to an effective world-wide delivery service. With a total of more than 1200 motivated employees and more than 100 service offices in 95 countries, we also offer our customers the biggest service network of all suppliers on the market.

The combination of highest product quality and a marked focus on service and consulting is a major cornerstone of the AEROSIL® strategy. As a brand that is active worldwide we also want to combine with partners to form a strong, international network in which we concentrate our areas of expertise.

A functioning globality, which our customers experience on a local level.

Always close by.
Customer Service
Evonik Degussa GmbH
Inorganic Materials
Weißfrauenstr. 9
60287 Frankfurt am Main
Germany
PHONE +49 69 218-2532
FAX +49 69 218-2533
e-mail aerosil@evonik.com
www.aerosil.com

North America
Evonik Degussa Corporation
Inorganic Materials
379 Interpace Parkway
P.O. Box 677
 Parsippany, NJ 07054-0677
USA
PHONE +1 800 AEROSIL
PHONE +1 973 541-8510
FAX +1 973 541-8501

Asia (excluding Japan)
AEROSIL Asia Marketing Office
c/o NIPPON AEROSIL CO., LTD
P.O. Box 7015
Shinjuku Monolith 13F
3-1, Nishi-Shinjuku 2-chrome
Shinjuku-ku, Tokyo
163-0913 Japan
PHONE +81 3 3342-1786
FAX +81 3 3342-1761

Japan
NIPPON AEROSIL CO., LTD
Sales&BMarketing Division
P.O. Box 7015
Shinjuku Monolith 13F
3-1, Nishi-Shinjuku 2-chrome
Shinjuku-ku, Tokyo
163-0913 Japan
PHONE +81 3 3342-1763
FAX +81 3 3342-1772

Asia (excluding Japan, China)
Evonik Degussa GmbH
Technical Service Aerosil
Rodenbacher Chaussee 4
Postfach 1345
63403 Hanau-Wolfgang
Deutschland
PHONE +49 6181 59-5936
FAX +49 6181 59-6489

Japan
NIPPON AEROSIL CO., LTD
Applied Technology Service
3 Mita-Cho
Yokkaichi, Mie
510-0841 Japan
PHONE +81 593 45-5370
FAX +81 593 46-6557

China
Evonik Degussa (China) Co. Ltd.
Technical Service Aerosil
55 Chundong Road
Xinzhuang Industry Park
Shanghai 201108 P.R. China
PHONE +86 21 619-1065
FAX +86 21 619-1075

Or your local Evonik Degussa contact

Evonik Degussa GmbH
Inorganic Materials
Weissfrauenstr. 9
60287 Frankfurt am Main
Germany
PHONE +49 69 218-2613
FAX +49 69 218-62613
e-mail ask-si@evonik.com

Evonik. Power to create.